

Support Booting from QSPI Flash in Linux i.MX RT1060

Detailed Requirements and Design

rm2861-drad-1_1.doc

RM:	2861
Revision:	1.1
Date:	12/4/2018

TABLE OF CONTENTS

1.	OVERVIEW	3
2.	REQUIREMENTS	3
2.1. 2.2.	Detailed Requirements Detailed Non-Requirements	3
3.	DESIGN	4
3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	Design: U-Boot Boot from QSPI Flash	4 5 5
	·	
4.	TEST PLAN	ť
4.1. 4.2. 4.3. 4.4.	TEST PLAN	

1. Overview

The following is a high-level overview of the problem being resolved by this project:

This project develops support for booting from QSPI Flash in the Linux i.MX RT1060 BSP.

2. Requirements

2.1. Detailed Requirements

The following are the requirements for this project:

- 1. Support booting of U-Boot from QSPI Flash, with no reliance on presence of SD Card or any other storage devices.
 - o Rationale: Explicit customer requirement.

 Implementation: Section: "Design: U-Boot Boot from QSPI Flash".

 Test: Section: "Test Plan: U-Boot Boot from QSPI Flash".
- 2. Support the U-Boot standard QSPI commands (the sf_ commands family) for QSPI Flash.
 - Rationale: Explicit customer requirement.
 Implementation: Section: "Design: U-Boot sf_ Commands ".
 Test: Section: "Test Plan: U-Boot sf_ Commands".
- 3. Store the U-Boot environment in QSPI Flash.
 - o Rationale: Explicit customer requirement.

 Implementation: Section: "Design: U-Boot Environment in QSPI Flash".

 Test: Section: "Test Plan: U-Boot Environment in QSPI Flash".
- 4. Support installation of images to QSPI Flash from SD Card from the U-Boot command line interface.
 - o *Rationale*: Explicit customer requirement. *Implementation*: Section: "Design: U-Boot Install Images to QSPI Flash". *Test*: Section: "Test Plan: U-Boot Install Images to QSPI Flash".
- 5. Support Linux boot from QSPI Flash, in the following configuration:
 - o kernel image loaded from QSPI Flash to RAM for execution;
 - dtb image loaded from QSPI Flash into RAM for execution;
 - o root file system mounted in QSPI Flash as the read-write Flash file system (UBIFS).

```
Rationale: Explicit customer requirement.

Implementation: Section: "Design: Linux Boot from QSPI Flash".

Test: Section: "Test Plan: Linux Boot from QSPI Flash".
```

- 6. Support QSPI Flash in Linux, using a newly developed device driver following the structure of the following existing device driver: fsl-quadspi.c ({BSP-ROOT}/linux/drivers/mtd/spi-nor/fsl-quadspi.c). This must include support for Linux Flash file system.
 - Rationale: Explicit customer requirement.
 Implementation: Section: "Design: Linux Device Driver for QSPI Flash and Flash File System".

 Test: Section: "Test Plan: Linux Device Driver for QSPI Flash and Flash File System".

2.2. Detailed Non-Requirements

The following are the non-requirements for this project that may otherwise not be obvious:

- Support for any Flash devices other than the QSPI Flash device present on the NXP i.MX RT1060 EVKB board is not required.
 - o Rationale: Costs reduction measure.
- 2. Support for Linux boot scenarios other than the one listed in Section: "Detailed Requirements" is not required.
 - Rationale: Costs reduction measure.

3. Design

3.1. Design: U-Boot Boot from QSPI Flash

A dedicated configuration file mxrt1060-evk-sfboot_defconfig will be added to U-Boot to support boot from QSPI Flash on the NXP i.MX RT1060. The standard build procedure will be used to generate the image u-boot.flexspi bootable from QSPI Flash:

```
make mxrt1060-evk-sfboot_config
make
```

The u-boot.flexspi image must be programmed to the QPSI flash on the NXP i.MX RT1060 EVKB board at offset 0. The image consists of the U-Boot itself and two i.MX RT1060-specific headers:

- Image Vector Table (IVT);
- The FlexSPI Configuration Block.

The Image Vector Table is generated by mkimage using the board/freescale/mxrt106x-evk/imximage.cfg configuration file.

The The FlexSPI Configuration Block is compiled from the board/freescale/mxrt106x-evk/flexspi_cb.c file. This file contains a definition of the flexspi_nor_config_t structure, as per the i.MX RT1060 Processor Reference Manual.

The default configuration will be set up to support the ISSI QSPI Flash installed on the EVKB board.

3.2. Design: U-Boot sf_ Commands

The standard U-Boot sf commands will be enabled in the U-Boot configuration to support the SPI Flash read, erase and write operations.

3.3. Design: U-Boot Environment in QSPI Flash

Whenever the mxrt1060-evk-sfboot configuration is selected in U-Boot, the U-Boot environment will be stored in the QSPI Flash.

The environment, along with the redundant environment copy, will be placed at the address range 0x50000 - 0x70000 in QSPI flash.

3.4. Design: U-Boot Install Images to QSPI Flash

The QSPI Flash device will be logically divided into 5 sections to store the software components of the system:

- 0x000000 0x050000 U-Boot
- 0x050000 0x070000 U-Boot Environment
- 0x070000 0x080000 DTB Image
- 0x080000 0x480000 Kernel Image
- 0x480000 0x800000 Root File System

The following commands will be defined in the U-Boot environment to update the above components:

- sf_uboot_update Update the U-Boot section
- sf_dtb_update Update the DTB section
- sf_kernel_update Update the Kernel section
- sf_rootfs_update Update the RootFS section

All the sf_*_update commands will read images from the FAT FS partition on SD-card and install them to the corresponding section in QSPI Flash. The names of the images are defined by the following U-Boot environment variables:

- uboot File name for the U-Boot image, default is u-boot.flexspi
- dtb File name for the DTB image, default is rootfs_ubi.dtb
- image File name for the Kernel image, default is rootfs_ubi.uImage
- rootfs File name for the RootFS image, default is rootfs.ubi

The sf_*_update commands will be available in the mxrt1060-evk-sfboot configuration when booting from QSPI Flash. If there is no U-Boot installed in QSPI Flash yet, the user can use the regular mxrt1060-evk configuration to boot from SD-card and make the first installation of U-Boot to the QSPI Flash. The following is the instruction on how to build the U-Boot image to boot from SD-card with write support to QSPI flash:

- 1. Switch to the regular mxrt1060-evk configuration.
- 2. Run make menuconfig to enable the FSL_FLEXSPI, SPI_FLASH, SPI_FLASH_ISSI and CMD_SF configuration options.
- 3. Build the u-boot-dtb.imx image and install it to the SD-card.

Note that only the sf erase and sf write operation supported when booting from SD-card. The sf read command is available bu can return wrong data, when booting from SD card. This boot mode is used only for the first installation of U-Boot to QSPI Flash. sf read is fully supported when booting from the QSPI Flash.

3.5. Design: Linux Boot from QSPI Flash

The separate projects/rootfs_ubi will be created to demonstrate booting Linux from QSPI flash. The following main feature will be enabled in the new project:

- Support for QSPI flash will be enabled in the kernel configuration.
- initramfs will be disabled in the kernel configruation. Instead the root filesystem will be mounted on an UBIFS file system in QSPI Flash.
- The kernel and the DTB images will be built separately, outside of the mkimage multi-part image.

To implement these features the following options will be added to the common build rules and will be used in Makefile for the rootfs_ubi project:

- RFS_BUILD_DIR temporary directory to build the root file system image
- UBI_IMAGES tells the make to build the file system image
- MKFSUBIFS_FLAGS Flash-specific flags for the mkfs.ubifs utility
- UBINIZE_FLAGS Flash-specific flags for the ubinize utility
- SEPARATE_DTB tells the make not to build the multi-part image but save the DTB separately.

3.6. Design: Linux Device Driver for QSPI Flash and Flash File System

An fsl_flexspi.c driver will be added to the Linux device drivers.

The driver will provide an API compatible with the standard SPI-NOR framework in the kernel similar to the existing fsl_qspi.c driver. The QSPI Flash will be available in Linux as a standard MTD device.

Support for Linux Flash file systems does not require changes to the kernel.

4. Test Plan

4.1. Secure Download Area

The downloadable materials developed by this project are available from a secure Web page on the Emcraft Systems web site. Specifically, proceed to the following URL to download the software materials:

• https://www.emcraft.com/imxrt1060/rm2861

The page is protected as follows:

- Login: imxrt1060
- Password: CONTACT EMCRAFT FOR DETAILS

4.2. Downloadable Files

The following files are available from the secure download area for this release:

- u-boot.flexspi U-Boot image installable to QSPI Flash.
- u-boot-dtb.imx U-Boot image installable to SD-card with support for sf_* commands; this image allows booting from SD Card and installing U-Boot to QSPI Flash.
- rootfs_ubi.dtb Linux device tree.
- rootfs_ubi.uImage Linux kernel.
- rootfs.ubi UBIFS image with Linux rootfs.
- u-boot.patch Source code patch to U-Boot.
- linux.patch Source code patch to Linux.
- projects.patch Source code patch to projects/.

4.3. Test Set-Up

4.3.1. Hardware Set-Up

The following hardware set-up is required for execution of the test plan in this project:

- A development host Linux PC.
- The NXP i.MX RT1060 EVKB board with serial console connected to PC.
- SD-card as the media to transfer the images from the development host to the target board.

4.3.2. Software Set-Up

U-Boot Build:

1. Apply the U-Boot patch from the top of the fresh linux-cortexm installation:

```
$ cd u-boot
$ patch -p1 < ../u-boot.patch</pre>
```

- 2. Build the bootable SD-card image with support for the sf_* commands for the first U-Boot installation to QSPI Flash:
 - 1. Enable the default configuration for the IMXRT1060 EVK board

```
$ make distclean
$ make mxrt106x-evk_config
```

2. Run menuconfig and enable the FSL_FLEXSPI, SPI_FLASH, SPI_FLASH_ISSI and CMD_SF configuration options:

```
$ make menuconfig
Symbol: FSL_FLEXSPI [=y]
Prompt: Freescale Flex SPI controller
 Location:
    -> Device Drivers
(1) -> SPI Support
Symbol: SPI_FLASH [=y]
Type : boolean
Prompt: Legacy SPI Flash Interface support
 Location:
   -> Device Drivers
      -> SPI Flash Support
Symbol: SPI_FLASH_ISSI [=y]
Type : boolean
Prompt: ISSI SPI flash support
 Location:
    -> Device Drivers
      -> SPI Flash Support
         -> Legacy SPI Flash Interface support (SPI_FLASH [=y])
Symbol: CMD_SF [=y]
Type : boolean
Prompt: sf
 Location:
    -> Command line interface
      -> Device access commands
```

3. Build U-Boot:

```
$ make
```

4. Install the resultant image to the connected SD-card:

```
$ sudo dd if=u-boot-dtb.imx of=/dev/sdX bs=1k seek=1
$ sync
```

- 3. Build the U-Boot image bootable from QSPI Flash
 - 1. Configure and build U-Boot for QSPI Flash:

```
$ make distclean
$ make mxrt106x-evk-sfboot_config
```

```
$ make
```

2. Copy the resultant image to the FATFS partition on the SD-card:

```
$ sudo mount /dev/sdX1 ~/tmp/
$ sudo cp u-boot.flexspi ~/tmp/
$ sudo umount ~/tmp/
```

Linux Build:

1. Apply the Linux and projects/ patches:

```
$ cd linux
$ patch -p1 < ../linux.patch
$ cd ../projects
$ patch -p1 < ../projects.patch</pre>
```

2. Build the rootfs_ubi project:

```
$ cd rootfs_ubi
$ make
```

3. Copy the resultant images to the FATFS partition on the SD-card:

```
$ sudo mount /dev/sdX1 ~/tmp/
$ sudo cp rootfs_ubi.uImage rootfs_ubi.dtb rootfs.ubi ~/tmp/
$ sudo umount ~/tmp/
```

Prebuilt Binaries: For convenience, the prebuilt binaries resulting from the above build procedure are available in the area documented in Section: "Downloadable Files"

4.4. Detailed Test Plan

4.4.1. Test Plan: U-Boot Boot from QSPI Flash

The following step-wise test procedure will be used:

- 1. Power off the target board.
- 2. Set-up the sw7 switch on the target board to boot from SD-card (sw7/1 = on, sw7/2 = off, sw7/3 = on, sw7/4 = off)
- 3. Insert the SD-card prepared in Section: "Software Set-Up" and power on the board.
- 4. Stop U-Boot at the command monitor.
- 5. Run the following commands to install U-Boot to QSPI Flash:

```
=> sf probe 0
=> sf erase 0 0x50000
=> fatload mmc 0 ${loadaddr} u-boot.flexspi
=> sf write ${loadaddr} 0 ${filesize}
```

- 6. Power off the target board.
- 7. Set-up the sw7 switch on the target board to boot from QSPI Flash (sw7/1 = off, sw7/2 = off, sw7/3 = off, sw7/4 = off)
- 8. Remove the SD-card and power on the board.
- 9. Validate that U-Boot has successfully booted from QSPI Flash.

4.4.2. Test Plan: U-Boot sf Commands

The following step-wise test procedure will be used:

- 1. Boot U-Boot from QSPI Flash.
- 2. Probe the QSPI Flash. Make sure that the correct Flash info is printed out to the console:

```
=> sf probe 0
SF: Detected is25wp064a with page size 256 Bytes, erase size 64 KiB, total 8 MiB
=>
```

3. Read the U-Boot partition to RAM:

```
=> sf read ${loadaddr} 0 0x50000
device 0 offset 0x0, size 0x50000
SF: 327680 bytes @ 0x0 Read: OK
=>
```

4. Make sure the FlexSPI Configuration Block is at the beginning of the read data: the first 4 symbols must be "FCFB":

```
=> md ${loadaddr} 1
80007fc0: 42464346 FCFB
=>
```

5. Erase 5 sectors in the middle of QSPI Flash:

```
=> sf erase 0x300000 0x50000
SF: 327680 bytes @ 0x300000 Erased: OK
=>
```

6. Write the U-Boot image to the erased area:

```
=> sf write ${loadaddr} 0x300000 0x50000
device 0 offset 0x300000, size 0x50000
SF: 327680 bytes @ 0x300000 Written: OK
=>
```

7. Read it back to a separate area in RAM:

```
=> sf read 0x81000000 0x300000 0x50000
device 0 offset 0x300000, size 0x50000
SF: 327680 bytes @ 0x300000 Read: OK
=>
```

8. Make sure that the data in 2 areas are identical:

```
=> cmp.b ${loadaddr} 0x81000000 0x50000
Total of 327680 byte(s) were the same
=>
```

4.4.3. Test Plan: U-Boot Environment in QSPI Flash

The following step-wise test procedure will be used:

- 1. Remove SD-card and boot U-Boot from QSPI Flash.
- 2. Define and save a test variable:

```
=> setenv testvar testval
=> saveenv
Saving Environment to SPI Flash...
SF: Detected is25wp064a with page size 256 Bytes, erase size 64 KiB, total 8 MiB
Erasing SPI flash...Writing to SPI flash...done
Valid environment: 2
=>
```

3. Reset the board:

```
=> reset
```

4. Make sure the test variable exists and has the correct value:

```
=> print testvar
testvar=testval
=>
```

4.4.4. Test Plan: U-Boot Install Images to QSPI Flash

The following step-wise test procedure will be used:

- 1. Boot U-Boot from QSPI Flash.
- 2. Insert the SD-card prepared in Section: "Software Set-Up" to the SD Card holder.
- 3. Reset the environment:

```
=> env default -f -a
=> saveenv
=>
```

4. Install the software components:

```
=> sf probe 0
SF: Detected is25wp064a with page size 256 Bytes, erase size 64 KiB, total 8 MiB
=> run sf_uboot_update
reading u-boot.flexspi
256000 bytes read in 78 ms (3.1 MiB/s)
SF: 327680 bytes @ 0x0 Erased: OK
device 0 offset 0x0, size 0x3e800
SF: 256000 bytes @ 0x0 Written: OK
=> run sf_dtb_update
reading rootfs_ubi.dtb
10438 bytes read in 25 ms (407.2 KiB/s)
SF: 65536 bytes @ 0x70000 Erased: OK
device 0 offset 0x70000, size 0x28c6
SF: 10438 bytes @ 0x70000 Written: OK
=> run sf_kernel_update
reading rootfs_ubi.uImage
2957824 bytes read in 693 ms (4.1 MiB/s)
SF: 4194304 bytes @ 0x80000 Erased: OK
device 0 offset 0x80000, size 0x2d2200
SF: 2957824 bytes @ 0x80000 Written: OK
=> run sf_rootfs_update
reading rootfs.ubi
1310720 bytes read in 320 ms (3.9 MiB/s)
SF: 3670016 bytes @ 0x480000 Erased: OK
device 0 offset 0x480000, size 0x140000
SF: 1310720 bytes @ 0x480000 Written: OK
```

4.4.5. Test Plan: Linux Boot from QSPI Flash

The following step-wise test procedure will be used:

1. Remove the SD Card from the SD holder. Reset the board and make sure it automatically boots up to busybox:

```
=> reset
...
init started: BusyBox v1.24.2 (2018-06-18 18:30:51 MSK)
/ #
```

4.4.6. Test Plan: Linux Device Driver for QSPI Flash and Flash File System

The following step-wise test procedure will be used:

- 1. Boot from QSPI Flash up busybox.
- 2. Make sure that the UBIFS partition is mounted as the Linux root file system:

```
/ # mount
ubi0:rootfs on / type ubifs (rw,relatime)
devtmpfs on /dev type devtmpfs (rw,relatime,mode=0755)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
devpts on /dev/pts type devpts (rw,relatime,gid=5,mode=620,ptmxmode=000)
/ #
```

3. Make copy of the busybox binary in the Flash-based root file system and reboot:

```
/ # cp /bin/busybox /
/ # reboot
```

4. After reboot, make sure that the original file and the copy are identical:

```
/ # md5sum busybox
099afa6f383f8186b5e849ecc2efc4d0 busybox
/ # md5sum /bin/busybox
099afa6f383f8186b5e849ecc2efc4d0 /bin/busybox
/ #
```

RM#: 2861 11/11 Revision: 1.1, 12/4/2018