
Emcraft Systems Confidential

Supporting LVGL GUI in i.MX
RT uClinux BSP
Detailed Requirements and
Design rm6919-drad-1_2.doc

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

TABLE OF CONTENTS

1. OVERVIEW .. 3
2. UNDERSTANDING IMPLEMENTATION ... 3

2.1. Understanding Integration and Build Framework ... 3
2.2. Implementing I/O interactions ... 4
2.3. Understanding Interface to Linux I/O Frameworks ... 5

3. RUNNING LVGL DEMOS .. 5
3.1. Running Standard LVGL Demos .. 5
3.2. Running Emcraft Ebike Demo .. 7

4. BUILDING LVGL ... 8
4.1. Obtaining LVGL Add-on .. 8
4.2. Building LVGL ... 8

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 3/8 Revision: 1.2, 2/16/2024

1. Overview

This application note explains how to run the LVGL GUI in uClinux running on the i.MX RT devices. LVGL is
the most popular free and open-source embedded graphics library to create powerful UIs for any MCU, MPU and
display type. Refer to https://lvgl.io/ for detailed information on the LVGL GUI.

The Emcraft BSP includes a port and integration of the LVGL GUI, specifically for the i.MX RT devices running
uClinux. The LVGL GUI support is integrated on top of the Linux framebuffer device driver (for the display)
and touch screen devices driver, providing seamless integration with the Linux display and /dev/input input
devices frameworks.

Full sources of the LVGL GUI, as well as pre-built LVGL binaries are provided.

2. Understanding Implementation

2.1. Understanding Integration and Build Framework

The LVGL sources, as well as some pre-built binaries, are integrated to the Emcraft uCLinux distribution in the
A2F directory. The following are the key LVGL directories available in the distribution:

• A2F/lvgl - source code of the LVGL library itself (clone of the original https://github.com/lvgl/lvgl / tag
v8.3.6)

• A2F/lv_drivers- source code of the LVGL drivers (clone of the original
https://github.com/lvgl/lv_driver / tag v8.3.0)

• A2F/lvgl_bins/IMXRT105X_NXPEVK/ - pre-built binaries for the NXP IMXRT1050-EVKB board
• A2F/lvgl_bins/IMXRT105X_NXPEVK/liblvgl.so - LVGL shared library, pre-built for the NXP

IMXRT1050-EVKB board kit and display
• A2F/lvgl_bins/IMXRT105X_NXPEVK/benchmark - a standard LVGL demo application, pre-built for the

NXP IMXRT1050-EVKB board kit and display. Other pre-built LVGL demos included in this directory
are: ebike, music, stress, widgets.

The LVGL is built by the user in context of the standard projects/rootfs/ project available in the Emcraft
distribution. Specifically, the LVGL configuration and build files, along with some LVGL demo applications can
be found in the projects/rootfs/lvgl directory. The key files in that directory are as follows:

• lv_drv_conf.h - header file with configuration parameters for the Linux framebuffer and touchscreen
• lv_conf.h - header file with configuration parameters for various LVGL options
• main.c - C source file containing a typical main() for an LVGL application
• Makefile - build file allowing to build it all together.

The core of the LVGL is built as a shared library and is available on the target board as /usr/lib/liblvgl.so.
Any LVGL demos are built as separate Linux applications linked with the liblvgl.so library.

Even though, as noted above, the LVGL library as well as some standard LVGL demos prebuilt for a specific
reference kit, are available from the Emcraft distribution, it is important to understand that in a typical situation
one will have to rebuild the library and application binaries from scratch. The reason for that is that re-
configuring the LVGL for a specific I/O configuration, as well as to port to a new display and / or a new input
device, implies making custom changes to the lv_drv_conf.h and lv_conf.h configuration header files. Once
an update has been made to those files, the LVGL library and any LVGL applications need to be rebuilt. One
rebuild the library and applications by running the Makefile in the projects/rootfs/lvgl directory.

https://lvgl.io/
https://github.com/lvgl/lvgl
https://github.com/lvgl/lv_driver

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 4/8 Revision: 1.2, 2/16/2024

The Emcraft distribution includes 4 standard LVGL demos, which are built as part of the projects/rootfs/
project and included to the target root filesystem:

• benchmark_gui_demo
• music_gui_demo
• stress_gui_demo
• widgets_gui_demo.

2.2. Implementing I/O interactions

In addition to the 4 standard LVGL demos, Emcraft provides one more to demonstrate interactions of the GUI
with various IO interfaces. The GUI is based on the Futuristic Ebike example form the SquareLine Studio
(https://squareline.io/).

The Original Futuristic Ebike project was modified by Emcraft in the SqureLine Studio to assign a pin_clicked
C-function callback to the virtual keyboard button click events in the Group Pin component. Then the UI was
then exported to the projects/rootfs/lvgl/ebike_ui directory. The pin_clicked callback was implemented in
projects/rootfs/lvgl/ebike_ui/ui_event.c so that when the user enters a 4-digits PIN-code and presses the
V button on the virtual keyboard the PIN-code in printed out to the Linux shell terminal from when the
application is being run.

There is a separate thread implemented by Emcraft in the projects/rootfs/lvgl/main.c to monitor the state of
the USER button (the SW8 button on the back side of the NXP IMXRT1050-EVKB board). If the USER button is
pressed the application assumes that the bike accelerates, and if the button is released the bike slows down. A
dedicated LVGL timer was implemented to update the Speed, Trip, Odometer and other on-screen labels
depending on the current button state. The user can see that the bike speed is increasing if the USER button is kept
pressed, and decreasing if one releases the button.

The integration and build provisions for ebike_gui_demo are similar to the ones for the 4 standard LVGL demos
described above. Once the demo is built, it is available on the target from the Emcraft standard rootfs project.

http://ocean:8000/SquareLine
https://squareline.io/
http://ocean:8000/SqureLine

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 5/8 Revision: 1.2, 2/16/2024

2.3. Understanding Interface to Linux I/O Frameworks

The LVGL implementation in the Emcraft BSP is configured to use the standard Linux framebuffer and input
frameworks to support the display graphics and input for the LCD panel.

In case of the NXP i.MX RT1050-EVK board, this is the 4.3" LCD Panel RK043FN02H-CT.

Support for the framebuffer is provided by the mxs-lcdif driver (drivers/video/fbdev/mxsfb.c). The driver
is configured to a 480x272-pixels resolution with a 16-bit color depth. Access to the display graphics is available
via the /dev/fb0 device node:

/ # ls -al /dev/fb0
crw------- 1 root root 29, 0 Jan 1 00:00 /dev/fb0
/ # cat /sys/class/graphics/fb0/name
mxs-lcdif
/ #

Support for the touch screen is provided by the ft5x0x_ts driver (drivers/input/touchscreen/ft5x46_ts.c).
The input is available via the /dev/input/event0 device node:

/ # ls -al /dev/input/event0
crw------- 1 root root 13, 64 Jan 1 00:00 /dev/input/event0
/ # cat /sys/class/input/event0/device/name
ft5x0x_ts
/ #

Both the Linux frame buffer and the LVGL internal rendering buffers are allocated in the on-chip SDRAM. This
supports a 25 FPS, as measured with ebike and other standard LVGL demos.

3. Running LVGL Demos

3.1. Running Standard LVGL Demos

Step through the following procedure to run the standard LVGL demos:

1. From the Linux shell, type the benchmark_gui_demo command to run the benchmark demo

/ # benchmark_gui_demo

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 6/8 Revision: 1.2, 2/16/2024

Type Ctrl-C to finish the demo:

/ # benchmark_gui_demo
^C
/ #

2. Type the music_gui_demo command to run the music demo. Click to widgets icons on the touch panel
to navigate the demo:

/ # music_gui_demo

Type Ctrl-C to finish the demo:

/ # music_gui_demo
^C
/ #

3. Type the stress_gui_demo command to run the stress demo

/ # stress_gui_demo

Type Ctrl-C to finish the demo:

/ # stress_gui_demo
^C
/ #

4. Type the widgets_gui_demo command to run the widgets demo. Click to widgets icons on the touch
panel to navigate the demo:

/ # widgets_gui_demo

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 7/8 Revision: 1.2, 2/16/2024

Type Ctrl-C to finish the demo:

/ # widgets_gui_demo
^C
/ #

3.2. Running Emcraft Ebike Demo

Step through the following procedure to run the Emcraft Ebike demo.

1. From the Linux shell, type the ebike_gui_demo command to run the ebike demo

/ # ebike_gui_demo

2. Click to the padlock icon in the bottom right corner of the screen to switch to the "Unlock Your Bike"
group.

3. Click 4 any digits and then v. Make sure the correct PIN-code in printed out to the Linux shell terminal:

/ # ebike_gui_demo
entered pin: 4 7 1 2

4. Click to the bike icon to switch back to the "Driving Information" group.
5. Press and hold the SW8 button which resides on the opposite side of the i.MXR1050-EVK board to LCD.

Make sure that the Speed, Trip, Odometer and other values are increasing on the corresponding widgets
on the LCD. If release the SW8 button the Speed reading is decreasing:

Supporting LVGL GUI in i.MX RT uClinux BSP Emcraft Systems Confidential

RM#: 6919 8/8 Revision: 1.2, 2/16/2024

4. Building LVGL

4.1. Obtaining LVGL Add-on

Emcraft support the LVGL port to the i.MX RT as a paid add-on.

Once you have purchased the add-on from Emcraft, you can obtain the LVGL patch from the following location:

https://www.emcraft.com/imxrtaddon/imxrt1050/lvgl

The page is protected as follows:

• Login: CONTACT EMCRAFT FOR DETAILS
• Password: CONTACT EMCRAFT FOR DETAILS

4.2. Building LVGL

Step through the following procedure to apply the LVGL add-on and build the LVGL binaries:

1. From the top of the Linux installation on the development host, go to the projects directory

$ cd projects/

2. Apply the patch:

$ patch -p1 < ../../projects-lvgl-gui.patch

3. Build the roofts project:

$ cd rootfs/
$ make

The built LVGL binaries will be included in the bootable target image. They can be run on the target
as described in the previous sections.

https://www.emcraft.com/imxrtaddon/imxrt1050/lvgl

	Supporting LVGL GUI in i.MXRT uClinux BSP
	TABLE OF CONTENTS
	1. Overview
	2. Understanding Implementation
	2.1. Understanding Integration and Build Framework
	2.2. Implementing I/O interactions
	2.3. Understanding Interface to Linux I/O Frameworks

	3. Running LVGL Demos
	3.1. Running Standard LVGL Demos
	3.2. Running Emcraft Ebike Demo

	4. Building LVGL
	4.1. Obtaining LVGL Add-on
	4.2. Building LVGL

